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[i] Techniques are presented for efficiently evaluating quasi-linear diffusion coefficients
for whistler mode waves propagating according to the full cold plasma index of refraction.
In particular, the density ratio wpeAQe can be small, which favors energy diffusion. This
generalizes an approach, previously used for high-density hiss and electromagnetic ion
cyclotron waves, of identifying (and omitting) ranges of wavenormal angle 0 that are
incompatible with cyclotron resonant frequencies w occurring between sharp cutoffs of the
modeled wave frequency spectrum. This requires a detailed analysis of the maximum
and minimum values of the refractive index as a function of w and 0, as has previously
been performed in the high-density approximation. Sample calculations show the effect of
low-density ratio on the pitch angle and energy diffusion coefficients modeling the
effect of chorus waves on radiation belt electrons. The high-density approximation turns
out to be quite robust, especially when the upper frequency cutoff is small compared with
Qe. The techniques greatly reduce the amount of computation needed for a sample
calculation, while taking into account all resonant harmonic numbers n up to ±+o.
Citation: Albert, J. M. (2005), Evaluation of quasi-linear diffusion coefficients for whistler mode waves in a plasma with arbitrary
density ratio, J. Geophys. Res., 110, A03218, doi:10.1029/2004JA010844.

1. Introduction and Trakhtengerts et al. [2003]). However, it is assumed
here that quasi-linear theory is a meaningful description of[2] Cyclotron-resonant wave-particle interactions are cur-thlogerefetofuyfrmdwvsnhi-nry

[etl y edn addt o nesadn h eairo the long-term effect of fully formed waves on high-energyrently a leading candidate for understanding the behavior of particles [Summers et at., 1998; Summers and Ma, 2000;

outer radiation belt electrons following magnetic storms. In Home et a[., 2003, 2005].

particular, Summers et al. [1998] proposed that energization []reviu al ct of q ie f oh
by dawnside whistler mode chorus waves, combined with [4] Previous calculations of quasi-linear diffusion have
bytc dawnse whistlering modecousk wavestombinedc with generally relied on the high-density approximation intro-
pitch angle scattering by duskside electromagnetic ion duced by Lyons [1974b], which leads to a greatly simplified

cyclotron (EMIC) waves, might account for the observed form of the index of refraction as. This allows a character-

distributions of energetic electrons. By analyzing the path in ization of the resonant frequencies at each wavenormal

velocity space followed by an electron as it maintains

primary (n = -1) resonance with a field-aligned wave, it angle. Since the diffusion coefficients are infinite sums of

was found that energy diffusion is favored by the low (-1) integrals over wavenormal angle 0 (and then bounce aver-

values of the density ratio, Wp,/,Q,, found outside aged), it turns out to be possible, and extremely beneficial,
theluesofthe Hornedenty ra.io, 03 o pre/,funtd detaiede to restrict the range of the integrals over 0. This analysis hasthe plasmasphere. Home et at. [2003] presented detailed been carried out for whistler mode plasmaspheric hiss

quasi-linear diffusion coefficients for low-density chorus be rt, 199 fer refer to asPaper i] d

and confirmed the effectiveness of energy diffusion, al- EMIC waves [Albert, 2003, hereinafter referred to as Paper

though these calculations were restricted to local (equatorial) 2], using the high-density approximation. This paper gen-
interactions. Horne et al. [2005] presented bounce-averaged eralizes that approach to whistler mode waves with arbitrary
results, using realistic wave models. These calculations values of the density ratio.
were performed using two different approaches, one of [5] Section 2 presents the quasi-linear diffusion coeffi-
which is described by Glauert and Horne [2005] and one cients (pitch angle, momentum, and mixed), in a form thatof which is described here, generalizes the formulas of Lyons [I 974b] to relativistic test

[3] Whistler mode chorus waves are observed to have particles, general pt, and arbitrary wavenormal angle and
fine structure, including time-evolving frequencies [e.g., frequency profiles. Section 3 expresses the cyclotron reso-
Santolik et al., 2003] and are associated with the strongly nance condition in terms of 1/12 (denoted by P) and a
nonlinear processes of particle phase bunching and phase function V which contains all the dependence on parameters
trapping (see the review by Sazhin and Hayakawa [1992], of the test particle and briefly discusses the simple geomet-
and also Smith and Nunn [1998], Albert [2000, 2001, 2002], ric behavior of V as a function of w. Section 4 presents a

detailed algebraic, geometrical, and numerical analysis of
This paper is not subject to U.S. copyright, the full two-component cold plasma whistler-mode refrac-
Published in 2005 by the American Geophysical Union. tive index as a function of w. Particular attention is paid to
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A03218 ALBERT: DIFFUSION COEFFICIENTS FOR WHISTLER WAVES A03218

the maximum and minimum values over a fixed w range and The normalized diffusion coefficients themselves are then
how these values vary with 0. Several bounds and approx-
imations are discussed, including the high-density approx- V"= xZPxvdx = x d., (5)
imation and a novel factorization. Section 5 identifies values
of 0 for which the maximum-to-minimum ranges of V(w)
and 'I(w) do not overlap; for such 0 values, there can be no where n ranges over +oo, and similarly for 7,9 and V.,
resonances. For large-enough harmonic number Inl there The term 4,, above is exactly as given in equation (9) of
will be no resonances for any 0 (since Vmax becomes less Lyons [1974b], except that the arguments of the Bessel
than 'mmin), which cuts off the sum over n = -oc to .•• functions therein become [nxtan c(w - w,)/wn] (as in Paper 1)
Additional tests based on the curvatures of V(w) and '(w) to account for relativistic factors. The partial derivatives
are also developed. Finally, the dependence on latitude X is above may be expressed in terms of derivatives of ii(w, 0) by
considered, which leads to tests for X ranges that have no 1 8wý w R
resonances for any 0 or n. In section 6 the preceding -([- = (6)
analysis is used for n < 0 to isolate, or bracket, the resonant Vi+
frequencies which do exist so that they can be found quickly and
and easily by a generic one-dimensional (I -D) root-finding
algorithm. This bracketing cannot always be done for n > 0, OxI (7)/[w(w - w4)] - o'i/t
as explained, and alternative procedures are discussed. 1• sin0cos 0- o'/0(7)
Section 7 discusses the ratio Dp,D ,D and explores why this
ratio should increase as LpeI

2e decreases. Section 8 explores The physical momentum diffusion coefficients D are equal to
the reliability of the high-density approximation for different the normalized quantities 2 multiplied by £2c(Bjav/Bo)(mv)

2.
values of wPA2C and quantifies the gain in computational Finally, the bounce-averaged diffusion coefficients are
efficiency made possible by the methods of this paper. A (D,,,,) = f D•,,•(Ol9da) 2 dt/Tb, (D,,) = f D(,(oIo/oa)
summary is given in section 9. dt/¶b, and (D..) = f DpdltTb, where T b is the bounce time.

These may be converted to integrals over latitude (as detailed
2. Quasi-Linear Diffusion Coefficients for D,,, by Lyons et al. [1972] for a dipole field) or over

[6] The resonance condition for a diffusing particle is a. (which may give better numerical behavior near the
mirror point).

w - klv11 = w,, w. =_ snQc/Y, (I) J8] It has become standard to model the power spectrum
B (w) as proportional to a gaussian truncated at WLc and

where n is an integer, s = ±1 is the sign of the charge of the Wuc and the wavenormal angle profile gj(x) as a gaussian

particle, Qc = IqIBdmc is its local nonrelativistic gyrofre- truncated at x in and xmr.- Then, taking Aw equal to the

quency, and y is its relativistic factor. The local pitch angle frequency width 6w,

of the particle is ai, the index of refraction is pt . kctw, the 21
wavenormal angle is 0, and x will denote tan 0 throughout. 2 exp [-(W -

[7] The underlying physics of the diffusion coefficients G =verf[(wuc - wm)/18] + erf[(wm - tJLC)/&]' (8)
used here is identical to that of Lyons [I 974b], except for
the extension to relativistic test particles (as briefly dis- and, with the high-density approximation for p. (discussed
cussed by Lyons [1974a]). However, the frequency and below),
wavenormal angle profiles B2(w) and g,(0) are kept general,
and we also postpone specifying the form of the refractive /M f2\3/2ex _-(x-)2/'2
index. The normalized diffusion kernel for D, can be G2 =-1--M P -/-j (9)
written as 1(M9

•1Q CS 20,W 2

i2, cos2 O • (-sinm G, G2, (2) where M = meirn, and I(w) (with Xmin = 0) is defined by
T2 Aw v/cl - (aw/akii)/vl , Lyons [1974b]. Nonrelativistically, these expressions allreduce exactly to the formulas given there. The choice of

where Gi(Lo) = (Aw)B 2(w)/fB2(w')dw', and gaussians is not crucial, but the existence of lower and
upper frequency cutoffs, WLc and wuc, is essential for the
analysis. As in Papers I and 2, the frequency cutoffs can be

G2 (w, 0) =gw() (3) used to derive restrictions on 0, which limit the range of the
12 g ) +tOOt/Ow! sin 0'dO' x integration in equation (5). Thus by preidentifying ranges

of 0 for which w is outside the cutoffs, the amount of

The normalization Aw is arbitrary, but it is convenient to use computation needed to obtain D may be drastically reduced.

a value characteristic of the width of B2(w). Then V,, 2',
and Dp are given by 3. Resonance Condition

[9] Despite the formidable appearance of the expressions
for the diffusion coefficients, the only quantity not straight-

DfX sin2 at +o uoL V'/w
2_ cos (4)_______ forward to evaluate is the resonant frequency w(0), which is

-sin 0. + W/W G needed if EyX is integrated over 0 rather than w.
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V(co) The choice ± in equation (12) determines the labeling of the
wave as "R mode" (+) or "L mode" (-), but the
wavenormal surfaces exchange labels (or, as Stix [1962]
puts it, the labels exchange wavenormal surfaces) when
crossing P = 0 or D = 0. Here only waves with w < 02, and w
< wp are considered, although wpe is allowed to be less than
Qe Thus P is always negative, but D becomes negative for
w < Q2j (to lowest order in Al). Therefore ± is chosen to be

c,>0 "+" when D > 0, for R-mode polarization, and "-" when
D < 0, for continuity.

.. .. .. . [13] Usually, [? is treated as a function of 0 at fixed w;V0 -- ---- - o< here, Figure 2 shows T versus w at fixed 0 (and fixed wpJ•e).
For each curve, it can be shown algebraically that P/a'w = 0

0 Ico,,,I at w = 0 so that the behavior of %F near zero is
G)/Q. determined by its curvature 0,2,Q/aLw2 there. For small

Figure 1. The function V(w) at fixed 0, with n = 0 (dotted and moderate 0 this curvature is positive, so T(w) startsFigre . Te uncionV~) a fied6, ithn 0 doted out increasing but soon develops negative curvature,

curve), n = 1 (dashed curve), and n = -I (solid curve), for entualyreas before ngatie/ curvathen
an electron with -y = 4 and ( J/C2)COS2 0 = 0.5. eventually peaks (before reaching Qe/2), and then

decreases to zero while retaining negative curvature- These

curves each have one internal maximum and no internal
[io] The resonance condition, equation (1), may be writ- minima. For large 0, T starts out with with negative

ten as V(w, 0) = I(w, 0) where, similar to Papers I and 2, curvature and declines monotonically 'to zero, with no

internal maxima. The two classes of curves are separated
v22

V=-C(_n2O2tO2, W1,t• (0 by the curve that has zero curvature at w = 0; this occurs for

2(2) Ot/n Co,3) (0

There is a loss of sign information in going from equation sin2 0 I M + W----) ° e2,

(1) to V= I (via squaring), but it is assumed that for every =OM + W~e/Ql

wave mode with positive kjj/k there is a mode of equal
amplitude with negative k11/k, so any solution of V = p which gives 0 very close to 90' unless wpfle VIM_ or less.

corresponds to a solution of (1). Furthermore, the particle This is shown as the thick curve in Figures 2c and 2d and is

distribution is assumed to be the same for v11 positive and vjj observed to cross zero at frequency Wscp near Q2gm

negative. This definition of TI differs slightly from that of (f2,Qh)1/ 2 (the geometric mean of 02, and Qj).

Lyons [1974b] and Papers 1 and 2, where it denoted the [14] In general, 'I reaches zero at the frequency given by

high-density limit of [(wP2,/f)(1 + M/M]/i 2. This limit will the expression tan2 0 = -P/S [Stix, 1962]. Using this to find

be discussed in the next section. the T curve that reaches zero right at Q,,, for which S = 1,

[ii] The geometric properties of V(w) at fixed 0 were yields

established in Paper 1 and are shown in Figure 1. For n = 0,
V(w) has the constant value V0  (vq/c2)cos 2 0. For wt sin2 0s,, -P . : (14)
positive, V always has positive curvature and is increasing I I! ,

for w < w,, and decreasing and bounded below by Vo for w >
w,. For w, negative, V(w) is strictly increasing but bounded which is slightly less than sin 2 0s, This is shown by the
above by Vo and has positive curvature 0 V/Ot2 for w < upper dashed curve in Figure 2d. The T curve for sin2 0= 1

Iw,1/2 and negative curvature for w > IwI/2. The properties crosses zero at the lower hybrid resonance, wLH, where S =
of I are discussed in the next section. 0. Thus for w > wLH there is some maximum 0, the well-

known resonance cone angle, beyond which IQ becomes
4. n fnegative. This T curve is the lower dashed curve in Figure 2d.Index of Refraction Since sin 2 Ogm < sin 2 0r, < 1, the separating curve crosses

[12] The standard wave coefficients [Stix, 1962] for a cold zero at w, with WLH < W•ep < Q2gm. (A good approximation to
pure electron-proton plasma are WULI is

O.•w I - MT• (w1Q, - Qi lw)' (1 1) f M ýI+ ýýel2e
R+L R-L

P-= I ---•2•2(I + M), S--- , D=2

W2 2' 2'
which is always less than Qg,,.) •g, will also play an

and the full expression for T can be written as important role below.
[15] As 0 increases, the Ti curves generally shift left and

TI = (RL-PS) sin 2 0 + 2PS down, and wea and I'(Wpeak) are decreasing functions of 0
as confirmed by the falling curves in Figures 3a and 3b.

± I(RL-PS)2 sin4 0 + 4P 2D2 cos,2 0/2PRL. (12) From a different point of view, if for some value of 0 the
.1 slope Ma/Iw at fixed w is positive, the slope decreases to

3 of 12
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G) ee 2/0f2 10 cipe 2/ [, 2 =
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0.000 0.00.
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2
/0.

2
=10-

0.8 1.0.

0.6 ' 0.8 .

0.6

0.044

0.20.2 0.2

0.0 0.0
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.010 0.020 0.030 0.040
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Figure 2. The function T(w) at fixed values of o4e/fl, for sin2 6 = 0.1 (top curves), 0.3, 0.5, 0.7, and
0.9 (bottom curves). The thick solid curves in Figures 2c and 2d are for eSep and have zero curvature at
w = 0. Also shown in Figure 2d are the curves for 0g,,, which crosses zero at Qg (upper dashed
curve), and for 0 = x/2, which crosses zero at wLH (lower dashed curve).

negative values as 0 increases. Extensive numerical tests , [18] It is proved in Appendix A that 4 < V1D. Since APHD

show that once this slope becomes negative it stays negative admits explicit analytical expressions for wpeak and
so that there is (at most) one value of 0 for which IV peaks at P(wppeak), it provides a useful upper bound on the true 9ImaX.
any fixed w.

[16] The rising curves in Figure 3a show the inflection 4.2. A Factorization of '
point frequency, where T switches from positive curvature [19] A different form of the expression for T is suggested
to negative curvature. (The values wpeak and wi~n are by defining C = WA/, and k = RM and similarly for L, P, S,
undefined when the curvature at w = 0 becomes zero, at and D. Then the full T, with the same choices of ± as for
sinE2 0ep.) This winfl is usually an increasing function of 0, equation (12), can be written as
although it must stay less than Wak. In fact, Figure 3c
indicates that winfl is always less than WLH,. + = I ERL - sin 6 S

4.1. High-Density Approximation D

[17] In this and the next subsection, two alternate forms (kL/Ip, 2sin4 0 21}

of T are presented which will be useful: the high-density - -2 + cos' (16)
approximation and a novel factorization of IF. In the high-densit limi, Wg2 >> W/,sip lydopn h edn"density limit, W ios e eL simply dropping the leading The benefit of writing 'I in this form is that for w > Qgm, the
"I's" in the definitions of R, L, and P leads to the much first term in parentheses, denoted by IQ,, is a strictly

increasing function of Cj, while the term in braces, denoted

Q S1 M w2  sin 2 6 by T_, is a strictly decreasing function of i2. A proof is
<1 I - -1outlined by Albert [2004]. The monotonicity of ,+ and T_w2e I + M -2 immediately gives the bounds

sin4  2  
2I I+ '- - +i -- -(l -- M ) 2c o s 2 B. ( 5 + t L ) - • U ) < @ t ) < • ( U ) - W C , ( 7

which will be close estimates if w.c is close to Wuc. The
Apart from the terms in front of the braces, THD is the form lower bound is superfluous because the minimum value of
introduced by Lyons [1974b] and used for quasi-linear T is known to occur at either WLC or wuc, but the upper
diffusion coefficient calculations almost exclusively ever bound is valuable when Ulpeak lies between WLc and Wuc, as
since. discussed in section 5.
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Wpeok/ael Cnf1/0e + (CJ, eak)
0.o0000 ., ..

0.................... ........... " (b)

0.0010 ...............

0.0001 ,, , , . , ....... .. .

60.0 0.2 0.4 0.6 0.8 1.0
1.00 ( ............. -.. . sin 2

.

"0.0010 ,p, 
/0=10

0.00.1 -.

0.011' 10- 3  
- -

0.0 0.2 0.4 0.6 0.8 1.0
sin20

Figure 3. (a) The frequencies, normalized by fle, where '1'has a peak (falling curves) or inflection point
(rising curves), for we/02. = 10 (dotted curves), 0.1 (solid curves), 11-3 (dashed curves), versus sin2 0.

(b) The values ofr e at its peak. (c) The inflection frequencies normalized by wLHv.

[20] It is worth noting that the heavy ion approximation braic dependence of IF on w by considering IF geometri-
M = 0 reduces (RL - PS)ID to 1, which simplifies cally, using the properties discussed in the previous section,
equation (16) considerably. It is proved in Appendix A while exploiting the relatively simple algebraic dependence
that Q(M=) < T so that of * on 0.

p(M=0) < q <PHD. (18) 5.1. Overlap of Maximum and Minimum Values
[23] The fundamental geometric idea is that at fixed 0,

Also, '(+m=o) and '(If=o) are monotonic increasing and V(w) and 41(w) cannot intersect if Vis larger than IF or if Vis
decreasing, respectively, for all frequencies 0 < w < min[Qe, smaller than IF for all w between WLC and wuc. (The latter
wpe]. case is illustrated in Figure 5a.) Such 0 values yield no

[21] Figure 4 shows the dependence of the three versions resonances and can be skipped in the integration for the
of T on w for 12 different combinations of wpM, and 0. In diffusion coefficients. The prescription is thus
each double plot, the entire range 0 < w < Qe is shown, as
well as an expanded view of the range 0 < w < flgm. The skip 0: Va <'P• or Vmin > Imax. (19)
heavy dashed line is the full, exact T. Also shown in each
plot is @HD as a solid line that always lies above the full T Once the values of w that maximize and minimize Vand T
and @(M0o) as a solid line that always lies below the full T between WLC and Wuc are determined for fixed 0, writing out
but is in several cases almost indistinguishable from it. The the conditions in (19) directly gives quadratic inequalities of
vertical scale is indicated by listing the peak value of THD; the form A cos 4 0 + B cos 2 0 + C > 0. As in Paper I
this can be greater than 1, but the full expression for T is (Appendix Al) or Paper 2 (Appendix B), these inequalities
always less than 1. are readily solved for ranges of 0 which may be skipped.

5.1.1. Vmin and Vmax

5. Eliminating Ranges of 0 [24] The geometric behavior of V, shown in Figure 1,
makes it easy to determine Vmin and Vma (just as in Papers

[22] If the integrals in equation (5) are performed over w, I and 2). For w, = 0, they are both just V0. For w,, < 0, Vmin
the resonance condition gives an easily solved quadratic is V(wLc) and Vmna is V(wuc). For 0 < w, < w/c, Vmin is
equation for cos2 0 as a function of w. Integrating over x = V(wuc) and Vnmax is V(wLc), while for wuc < w,, Vmin is
tan 0 instead involves the more difficult problem of solving V(wLc) and Vma is V(wUC). If WLC < wý < WUC, Vmin is the
for w(0) but offers greatly improved efficiency by cutting smaller of V(wLc) and V(wuc) and Vmax is infinite.
down the required range of integration or, in favorable 5.1.2. The Condition Vm.,< 41.m.
cases, eliminating 0 integrals altogether. As in Papers 1 [25] Since XPmin is the smaller of @(WLc) and '@(wuc), the
and 2, the strategy is to circumvent the complicated alge- condition Vr,. < @min is satisfied by 0 ranges where both

5 of 12
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Cipe/ =Oe .01 pe/(),= 1.0 Cipe/"e=3.0

0
U-)

r 24.8 .25 2.76x 10-2

p-eak= ',peo=k *PokH*"peak= Hp(k __________

0.78 .8 x 10-3 8.68x 10-4
IJ /lH g 1,2. 0.13 Dm ,/ H,.0 g 1.3 /210

the eakvale of v/tpwic s iniae inec-iue o o/ slwa ,tehg-est

00

"q *Mk= 
*peak=*okK 6.37x10 6.37x10 7.08x 10-'

0 Qgm Q./2 1)..0 ogm fne/2 Q.. 0 ogm 0.2.

Figure 4. The function A11(w) (dashed curves), for different values of 6 and wp,1,eA. Also shown are the
high density approximation (upper solid curves) and the M = 0 approximation (lower solid curves). For
better resolution, the ranges 0 to 2gm and 0 to 9, are shown separately. The vertical scale goes from 0 to
the peak value of %PNHD which is indicated in each figure. For wpe/Qe as low as 1, the high-density
approximation is quite good for small w/f2,e unless 0 is very large.

Vmax < 'I(WLC) and Vm,, < 'P(Wuc). Note that for w, < 0 or estimate just given is q'+(wuc) T -(wuc, Ouc) and the upper
w,, > wuc, Va is V(wuc) and decreases with increasing Inl. bound given in equation (17) is q'+(wuc)1P-(WLC, eLC).
Therefore for Inl large enough, Vmax will always be less Neither estimate dominates the other, so both should be
than fTmin, which gives a systematic means of limiting the used to narrow down the retained 0 ranges. The upper bound
doubly infinite number of n values in the sum of QHD can be used as well.
equation (5).
5.1.3. The Condition Vmin > ,@/max 5.2. Curvature

[26] This condition is more complicated, because T,,m, [28] The conditions in equation (19), based on the max-
depends on 0. From Figure 3a, wpeak decreases as 0 increases imum and minimum values of of V(w) and T(W), may be
and there is a unique value 0 = Guc (found numerically) for augmented by geometrically simple ideas involving their
which T peaks at wuc, so T•max = "'(wJuc) for 0 < Euc. curvature. For w > WLH, IQ has negative curvature (concave
Similarly, there is a larger value ELC for which 1P peaks at downward) and V has positive curvature (concave upward)

OLC, SO g'max = '(WLc) for 6 > eLC. (Thus WLC < Wuc but on either side of w, (for Li positive) or for w < lw,j/2 (for w,
eLC > E)uc.) For either 0 < Euc or 0> eLC the condition negative). Now suppose V(wLc) < 'P(WLC) and V(wuc) <
Vmin > 'Tmax specifies quadratics for cos2 6. T(wuc) for some range of 0, as illustrated in Figure 5b.

[27] For 0 between Euc and e)LC, the maximum of T Since V(w) and T(w) "curve away from each other," there
occurs somewhere between wuc and WLc, and no simple, can be no intersections between WLC and wuc. The
exact characterization has been found. However, any func- corresponding 0 ranges can be found from quadratics as
tion x' which is an upper bound of TI, may be used, since above.
then Vmin > 1'max guarantees Vmi > 'Pmax. One immediate [29] Similar considerations apply to the combination V
(over)estimate is ql(wuc, euc), since the peak value of T concave downward, T concave upward, with V(wLC) >
decreases as 0 increases (see Figure 3b). Note that for 0 = T(wLc) and V(wuc) > T(wuc). However, this requires both
8LC, Ipeak is actually I+(WLC) T'_(WuC, eLOC), while the w,, <0, w> lw,,1/ 2 (for the V curvature) and w < WLH (for the
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0.20 I ranges of 0, X, and (;j. For simplicity, consider the case n = 0,
() (b) I for which V is independent of •. An underestimate of Vmir

I is V evaluated atOm•a and Xmi,, and an overestimate of

0.15 I',max, denoted by T',x, is 'I evaluated at 0,rm and Xmin and
maximized (numerically) over the range tLLc to C.uc. Thus

I \ all X values small enough that
0.10 !

0.10I: (V/C)2(Wpeo/'Qo) 2 H(X)COs2 0"'. > 1MAX (21)

0.05 : iwill satisfy Vmin > 9max. Similarly, all X values large
0enough that0 -

Ai / (v/c)2 (wpo/n4e)2H(X) cos20rand < iralN, (22)
0.00 <MN (

0.0 0.5 1.0 0.0 0.5 1.0
0.0• 0.5 10where "Mjiq is I& evaluated at 0ma. and X,,, and minimized

over WLC to L.,c, will satisfy Vmax < %jmin- These X ranges

Figure 5. V(w) and 91(w) with W•e/f~2 = 1 and sin 2 0= 0.1, will have no resonances within the imposed 0 and w rangesfor a 0.5 MeV electron with n = -1. Also shown for and cannot contribute to the bounce-averaged diffusion

illustration are WLc = 0.18 and ouc = 0.36. Maximum and coefficients. A further restriction on X is found in section 7.

minimum values are shown by filled circles for Vand open [32] The analysis may be extended to n 5 0 to restrict X

circles for T. (a) ot = 85'. In this case, Vmax < 9rmin and there ranges and, following section 5.1.2, to identify maximum
is no resonance between the cutoffs. (b) ot = 800. Here, vmax values of Inl beyond which there are no resonances at any

is not less than 9'min, but the lack of resonance between the accessible X.
cutoffs may be detected by the curvature argument of
section 5.2. 6. Finding Eligible Resonances

[33] After eliminating as much of the 0 and X integrals as
IF curvature) so that -y > ln]/2vA or E > 10 MeV for possible, the remaining 0 ranges must be integrated over
electrons. according to equation (5); to do this, the resonances that do

in fact lie between the cutoff frequencies must be found. A
5.3. Ranges of X straightforward approach is to derive a polynomial P(w)

[30] The diffusion coefficients may be bounce averaged from the resonance condition [Glauert and Home, 2005],
according to (DOto) = (I/Tb) f D,(e90o./19a)2ds/vll, etc., which turns out to be 10th order in w. Instead, the geometric
and the integration along a field line may be carried out over analysis of Vand IF presented above may be used to try to
latitude X [Lyons et al., 1972] or local pitch angle ot. The bracket the frequencies, which are then found with any one-
preceding approach may be extended to eliminate unneces- dimensional root finding algorithm [e.g., Press et al., 1992].
sary.ranges of X (or ot), as follows. Consider V and IV as The simplest situation is where V(uo) and 4'"(w) have
functions of C = uo/re so that the curve of V(u) at fixed 0 is
X-dependent only through ct and Q(Co) is X-dependent only
through Wpe,/Q,. V is a strictly decreasing function of X, "(pe2
while the X dependence of IF is more complicated but 9 = 0.25
(A2e)I strictly increases with wpe/f2e, as shown in Wpe Q =0.5
Figure 6 and proved in Appendix A. Then the resonance ( (o) b)
condition for a particle with equatorial pitch angle N can be 0.20 :' 2 =e 10.0
rewritten slightly as V = I, where

S2 -hsin 2  i_ .
2  0.15

_h2  ,)2

and h(X) is Q, divided by its equatorial value Q. The 0. 10
bracketed combination, denoted by H(X), strictly decreases ,

as X increases. Any X dependence Of Wope, WLC, and wuc will
be ignored for simplicity, though this can be generalized. 0.05
Then the normalized frequency cutoffs WLcffle and wuc/lg
are bounded below and above, respectively, by oLc - 0.
WLC/f2e(Nmax) and wuc = WUC//Te(Nmin), where Xmin and \Xmax 0.00

are determined by both coN and the range of the waves. 0.0 0.5 1.0 0.0 0.5 1.0
[31] It is now straightforward to derive conditions for N Wo,, W/0.

ranges which guarantee Vmax < T min or Vmin > Tmx so that
these ranges need not be included in the bounce averaging. Figure 6. The functions (a) T and (b) (w.,,I9) ' versus
The maximum and minimum values must be found over W1/fl for different values of upeI2/, with 0 = 30'.
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opposite signs everywhere between the cutoffs, since then V terms of the number of alternations in sign of sequences of
and T can intersect at most once (and will do so only if polynomials derived from P(w) and evaluated at w, and w2
V(wLc) - '(WLc) and V(wuq) - T(Wuc) have opposite [e.g., Barbeau, 2003]. However, since the 11 coefficients of
signs). Otherwise, if V and TI, have the same signs but V" P(w) depend on the parameters Wpe/£2e, 0, -Y, Q, and n (as do
and IQ" have opposite signs, then V and 91' can have at most the coefficients of the derived polynomials), a general
one intersection, which separates possible intersections of V characterization of these signs has not been attempted.
with T. These cases are identified below. Descartes' rule of signs and the theorem of Fourier and

Budan are similar but less definitive and almost as difficult
6.1. Case n = 0 to apply.

[34] This is the simplest case because V does not depend [40] To proceed, one option is to revert to the polynomial
on w. For 0 > 0sop, '(w) is always decreasing so can P(w) for w(0), accepting the inefficiency that the solutions
intersect V only once. For 0 < 0,,p, there will be at most will not necessarily lie between WLc and wuc. Also, the.
two intersections of T(w) with V, separated by Wpeak. In fact, (real) solutions must be checked to verify that they satisfy
Wpeak will only lie between WLc and 1wuc for Ouc <0< OeLC. the original equation V = 'IF. An alternative is to integrate
For other 0 values, T(w) is always either increasing or V"x over w instead, finding O(w) easily via a quadratic in
decreasing between the cutoffs and intersects V(w) there cos2 0 as mentioned in section 5; this accepts the analogous
exactly once (the 0 values for which these intersections are inefficiency that much of the w range will likely yield 0
outside the cutoffs have already been eliminated), values outside the range 0 min to 0 max and sacrifices the

elimination of any 0 ranges that are possible for this
6.2. Case w,, > 0 particular value of w,,.

[35] There are several subcases. First, for 0 > Osep, IF is
always decreasing, so it can intersect the rising branch of V
(where w < w,,) at most once. An intersection with the 7. Dependence of D on Density Ratio
decreasing branch of V would require w,, < Qgm so that y > [41] The ratio of momentum diffusion to pitch angle
l/VrMi or E > 20 MeV (for electrons), which is not diffusion is controlled by equation (4), which may be
considered here. written as

[36] Otherwise, T is either rising or has negative curva-
ture. The falling branch of V has positive curvature, so it , COS2 

OL W
2

could intersect T at most twice, with the two intersections A - = P in2a ( . n = u. (23)
separated by the single root of V - V Of course these roots -" sin
need only be sought between max(w,,, WLc) and Wuc.

[37] Since the rising branch of Valso has positive curva- This is the same dependence on w as in equation (10) for
ture and starts out below 1@ at w = 0, it can intersect T at V(w), with the similar result that A increases with increasing
most once in the range w > winfl where TI has negative w for Q2,, < 0 or w < Q2,, and decreases with increasing w for
curvature. However, if the rising branch of Vintersects %F at 0 < 92,, < w.
w < winfi, both curves are rising and have positive curvature [42] As Wpe/£2e decreases, Figure 6a shows that T
so multiple intersections must be considered. This is anal- increases for w < Wpeak while the V curve is unchanged, so
ogous to the situation of section 3.2.1 of Paper I and is (from Figures 1 or 5a) the resonant frequency will increase
resolved the same way: J/ is necessarily greater than V' at where OV/8w > 0 and vice versa. Thus for w,, < 0 or w < w,,
the first such intersection w., and OV/I& increases faster decreasing w,,10, means typical (<Wpeak) resonant w values
than linearly, so even the function (i9V/Ow)/w is increasing increase and A increases; for w > £Q,,, decreasing WpeI£2
with w. However, even when Ol/aw is increasing, (O/Ow)/ow means typical resonant w values decrease and A increases.
is decreasing (for all w, verified numerically). Thus YV [43] The only remaining case is 0 < w,, < w < £,,, but such
increases faster than 9I' for w > w., and this branch of V resonances do not seem to be possible. (Figure 5a shows two
cannot intersect TI again. In summary, there are at most three resonances with 0 < w,, < w, but the parameters are such that
intersections: one for the rising branch of Vand two for the w > Q2,,.) This statement is proved in Appendix B with the
falling branch. restriction wpe/f2 > 1/2. Extensive numerical tests (looking

for valid solutions to the quadratic for sin2 0 for over 101
6.3. Case w,, < 0 combinations of W, UWp•/£2e, Y, c, and n) indicate that it

[38] As in section 3.3 of Paper 1, this is the most holds for all values wpeflQe> 10- 3 (the lowest value tested).
problematic situation. Cases where either Vi(w) and V"(w), [44] This finding can also be used to increase the effec-
or else V' and TI", have opposite signs everywhere between tiveness of the methods of section 5.1, since for w,, > 0, only
the cutoffs can be handled as above. However, Vand T both the parts of the interval (WLc, wuc) outside (w,,, £,,) need be
have positive slope and positive curvature for w < min(winfl, considered. This finding could further be used to to elim-
Iwo,,I/2) (so that WLc < wLH), and they both have positive inate some X ranges, as in section 5.3; for w, > 0, values of
slope and negative curvature for max (winl, Iw,I/2) < w < X for which the interval (wLc, Wuc) lies within (w,,, £2,) can
Wpeak (so that Inl <y• cos 0,ij). If the preceding tests do not be omitted.
rule out these possibilities, then no convenient argument is
known to bracket the roots of V - TI, as was done above for 8. Results
w,, > 0 or in section 3.3 of Paper 1.

[39] In principle, Sturm's theorem gives the exact number [45] Bounce-averaged results based on models of
of real roots of the polynomial P(w) in any range (wh, W2) in CRRES wave data covering three different local time
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Figure 7. Local (equatorial) diffusion coefficients Dc,, Figure 9. Diffusion coefficients for a I MeV electron as in
and D fora I McV electron with Wpg./e = 1.5, Wm = 0.35, Figure 7 with wpeAfL = 0.5, w =0.1, 8& = 0.05, WLC = 0.05,
&,o = 0.15, wLC = 0.05, andcwuc = 0.65 (after Home et aL and Wuc = 0.15.
[2003]). The solid curves are based on the full whistler
dispersion relation while the dashed curves use the high
density approximation. centered at Xm = 0 with halfwidth x. = tan 300 and cutoffs

Xmin = 0 and Xmax = 1. For Wp/Ie = 10, 7.5, 5, and 2.5, the
sectors [Meredith et al., 2001] were presented by Home et values obtained for D,,, and Dpp effectively duplicate
al. [2005]. The diffusion coefficients were calculated by two Figures 2 and 3 of Home et aL [2003]. Agreement was
independent codes, one described by Glauert and Home also obtained for wpel/fe = 1.5, although this required
[2005] and one based on the analysis presented above. In lowering Xmax to slightly less than (i.e., 0.999 times) the
this section, the reliability of the high-density approxima- resonance cone value. Rather surprisingly, the values
tion is explored. Also, the gain in computational efficiency obtained using the form of the diffusion coefficients based
of the present methods is demonstrated. on the high density approximation, computed as in Paper 1,

are essentially identical for wpeI12e > 1.5 and almost the
8.1. Comparison to the High-Density Approximation same for wpf/fl = 1.5 (which in the high density approx-

[46] Local diffusion coefficients were calculated for imation does not involve the resonance cone), as shown in
1 MeV electrons with the same parameters as in the work Figure 7. Figure 8 shows another comparison, with the
of Home et al. [2003], namely B2(w), a gaussian of W/•fe normalized frequency parameters changed to Wpe/ 2 e = 1, Wco
centered at wmr = 0.35 with halfwidth &.j = 0.15 and cutoffs = 0.4, 6w = 0.1, WLc = 0.3, and Wouc = 0.5 (this avoids the
WLc = 0.05 and Wuc = 0.65, and g,(0), a gaussian of tan 0 resonance cone); the high-density approximation holds up

quite well except at low values of a. Figure 9 shows a
comparison with Wpelg = 0.5, Wm = 0.1, &o = 0.05, WLC =

2  D P D /p 2  0.05, and wuc = 0.15; here, the high-density approximation1 0-2 toP, , Pi not reliable.

S38.2. Computational Efficiency
1 OI[47] The amount of computer time needed to perform

SI these calculations varies greatly with the various physical

1 04 II parameters, as well as numerical details. The test case used10 here is the calculation of bounce-averaged diffusion rates
5/ for 1 MeV electrons at L = 4.5 in the night sector, with -5 <

n < 5, as presented by Home et al. [2005]. (Models for the
other sectors considered in that paper approach the reso-

10- 6, nance cone.) The CPU times reported are for totals for uo =

890, 88, ... ,5 (just outside the loss cone). To perform
/ 7 numerical integrations, the code described here relied on

10- Romberg's method, adapted from the implementation of
0 30 60 90 0 30 60 90 Press et aL [1992]. The calculations were performed as

a a f dX E-, f dxD'=, where x = tan 0. As a baseline, the
resonant frequencies w(0) were found by solving the

Figure 8. Diffusion coefficients for a I MeV electron as in polynomial P(Lw) discussed in section 6.3, regardless of
Figure 7 with Lop,/%, = 1, wm = 0.4, 8w = 0. 1, WLC = 0.3, and n, without using any of the analysis above. As expected,
Wuc = 0.5. this way was the slowest. Then the techniques of sections
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Table 1. CPU Times, s frequency range, including one based on the factorization of
P(W) V= ' T into increasing and decreasing functions and one based

on the high density approximation.E, MeV All 0 Restricted All 0 Restricted o h ihdniyapoiain15A1 The minimum and maximum values of the function

0.01 419.0 86.5 1 V(w) were also found, which leads to conditions on 0
0.03 366.2 91.0 119.6 51.3 (equation (19)) for the existence of solutions to the
0.1 364.7 164.7 127.3 86.2 resonance condition, V = T. This and related constraints
0.3 389.8 263.4 166.5 140.5 on 0 ranges can be used to drastically reduce the amount
1.0 508.3 421.0 235.1 204.0 of integration over 0 required to evaluate quasi-linear

Inl < 20 diffusion coefficients. A maximum value of Inj can be
0.01 1248.5 86.4 385.2 54.5 determined for which there are any resonances at all. This
0.03 1165.5 90.4 337.0 51.3 approach can also be extended to identify ranges of
0.1 1144.3 165.5 340.6 87.3 latitude X which contain no resonances; this was carried
0.3 1231.9 331.7 386.7 172.41.0 155t.3 834.5 540.1 396.3 out in detail for the case n = 0.

[52] For variable and parameter ranges that do contribute
to the diffusion rates, with wn > 0 it was possible to both
enumerate the resonant frequencies and to isolate them, i.e.,

5.1 and 5.2 were used to cut down the ranges of 0; over to find expressions that bracket and separate them so that
the ranges not skipped, the resonances were again found they can easily be found numerically. For cases with w. < 0
using P(w). This produced the same values (within a few that cannot be eliminated, a 10th order polynomial must be
percent) in considerably less time. Next, solving P(w) for solved for w(0) or else the integration performed over w,

the resonances was replaced by solving V = IQ but, as an which only requires solving a quadratic for sin2 0 as a

experiment, the integral over wavenormal angle was done function of w. These techniques were used to evaluate

over the whole range 0 to Xmax. This also sped up the diffusion coefficients for relativistic electrons at L = 4.5

calculations (sometimes by more, sometimes by less). using realistic models of the wave parameters, as reported

Finally, the techniques of restricting the 0 ranges and by Home et al. [2005].

solving V = T were combined, yielding the fastest method. [53] It should also be relatively straightforward to modify

The timing results are shown in Table 1. Generally this analysis for other types of plasma waves. In particular,
speaking, lower-energy particles have fewer resonances, Z modes can resonate with energetic electrons [Home and

so there is more opportunity to avoid nonresonant values Thorne, 1998] and have a refractive index that is quite

of 0, n, and X. For the same reason, the techniques will be similar to that of the whistler mode [e.g., Carpenter et aL.,

more effective the smaller the range of allowed resonan- 2003].

ces, WLC to WUC. [54] A brief analysis was given of the typically increasing

[48] Because of the decreased computer time, it is feasible relative strength of momentum diffusion, Dpp1D o,, with

to consider larger values of n. For large E and small ao, it decreasing density ratio Wp/f1Qe. In passing it was observed
turns out that resonances are present with n as large as ±23, that for wn > 0 (n < 0 for electrons), a particle with pitchalthough the addition to the total diffusion coefficients i± angle aL has no resonances between wn and wn/sin 2 a. It isonly a few percent. Moreover, the method discussed in tempting to speculate that this is somehow related to the gapsection 5.1.2 to estimate the maximum nl needed at each in chorus wave spectra frequently observed at Q,/2 [e.g.,
and X was very effective, typically overestimating In,,,, by Anderson and Maeda, 1977].
only 2 or 3. Thus the code takes only a little longer to [ss] Calculations using the full whistler dispersion rela-
include, in effect, -cc. < n < cc. Because the simplest tion were compared to results with the widely used high-
method behaves especially badly when n is too large density approximation. In the cases chosen, this
for resonance, Table 1 shows timing comparisons with approximation was found to be quite reliable for density-20 < n < 20. ratio WpA,/fle>lI and qualitatively good at W~peJ•2e =l

[49] AS mentioned, these timings are highly dependent on except at low pitch angle but failed badly at WpeA2e = 0.5.the] pArmenteoneof these probmin andote neicaly deproe-t oFinally, the computational effectiveness of the analysis wasthe param eters of the problem and on the num erical proce- d m n tae ,d c e s n h o p t r t m i nfc nl
dure. However, it is clear that the analysis and techniques demonstrated, decreasing the computer time significantly
presented here can greatly increase the efficiency and for calculations with -5 < n < 5 and even more so for
practicality of the calculations and (for a given amount of -20 < n < 20. Since the analysis is able to accurately

rtime) improve their accuracy. estimate the maximum In! for which resonances occur, it is
computer tpossible to take, in effect, -oo < n < oo.

9. Summary

[5o] For whistler mode waves, a detailed characterization Appendix A: Proofs of Some Properties of the
was given of IF = 1/42 versus w, treating 0 as a parameter. 'i Function *
was shown to have no internal minima and a single local [56] For whistler mode waves, with P < 0 and R > 0, T
maximum whose location wpcak decreases monotonically can be written as
with 0, as does I,(Wpeak). For a given range WLCto WUC, this
determines the value of t'/min, as well as the value of q/maX
when I(Wpeak) lies outside the frequency range. Several Ysin2 0 + S/RL - a Y2 sin4 0 + (D/RL)2 cos 2 0, (Al)
estimates were given for Imax when wpsk lies inside the
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where Y= (RL - PS)/2PRL and a is the sign of DL. Taking xI increases as p decreases and we/2 increases, as claimed
the (partial) derivative of T with respect to any of the in section 5.3.
parameters of (R, L, P) gives

Appendix B: Absence of Resonances Between w,,
1IY = Y' sin 2 0 + (S/RL)' and f2,,

YY' sin 40 + (D/RL)(D/RL)' cos2 0 [60] With jp,/f2e > 1/2, it is readily proved that there are-ar (A2) no resonances between w,, = InQIf/y and QI, = wn/sins2 a.
/y 2 sin4 

4 + (D/RL)2 cos 2 6 Since T < pHD,

This may be rewritten as qix < ±1 Cos2 0 < Cos20. (BI)ý44
'F ' i 2 0lCS R1

ý'I = - •sin 6(1 - cosT) - Cos0sin4 If f, <R S, then 1/_y2 < sin4 odnn2, and evaluating Vat w = Q,

+ (S)'[1  sin 2
o ( cos 1cos 0 sin (A3) gives

\ft.,/ -~-j-(l cosk) cosstnj~Vmi >I sin4 cs/n2
wiher 

-sin2"----' cos 2 0 > cos2 0. (B2)
where I-sn2O

If, on the other hand, f£, > £2e > wn, then cos 2 cc > I - Inl/ky
{cos tf, sin = {oY sin2 0, ID/RL cos 0} and evaluating Vat w = Qe (recall T < 0 for larger wO) gives

Fy2 sin4 0 + (D/RL) cos2 o s2 > S2 6> COS2 6. (B3)

and cos 0 sin 4) > 0. With 0 and 4) considered as independent
variables, 0 < 0, ) < 7r, it can be shown that the bracketed In either case, Vmin > 41mx, so there can be no solutions
term in (A3) is never less than 0. The form (A3) leads to to V = '.
proofs of three assertions concerning T made in the text, as
shown below. [61] Acknowledgments. This work was supported by the Space
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